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We study the effect of the ferromagnetic �FM� contacts on the spin accumulation in the lateral spin-valve
system for the collinear magnetization configurations. When an additional FM electrode is introduced in the
all-metallic lateral spin-valve system, we find that the transresistance can be fractionally suppressed or very
weakly influenced depending on the position of the additional FM electrode, and relative magnitudes of contact
resistance and the bulk resistance defined over the spin-diffusion length. Nonlocal spin signals such as nonlocal
voltage drop and leakage spin currents are independent of the magnetization orientation of the additional FM
electrode. Even when the additional contact is nonmagnetic, nonlocal spin signals can be changed by the spin
current leaking into the nonmagnetic electrode.
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I. INTRODUCTION

Electrons are characterized by their quantized spin and
charge. In conventional electronic devices, only the charge
degree of freedom has been employed for the control of the
electron transport. A new field of spintronics1 was born from
both experimental and theoretical efforts to harness the elec-
tron’s spin degree of freedom in order to control the electric
current in the devices. One of typical spintronic devices is
the spin valve which is a hybrid structure of ferromagnetic
�FM� metal/nonmagnetic �NM� material/FM metal. The cur-
rent passing through the spin valve depends on the magneti-
zation configuration of two FM metals. In the collinear case,
usually more current flows through the spin valve in the
parallel configuration than in the antiparallel configuration.
The difference in resistance between the two is called mag-
netoresistance �MR�. In the noncollinear case or when two
magnetization orientations are neither parallel nor antiparal-
lel, the spin-polarized current from one FM electrode exerts
the spin torque2–4 on the other FM electrode and induces the
magnetization dynamics. Examples of a spin valve are giant
magnetoresistance �GMR� devices,5,6 magnetic tunnel
junctions,7 nanopillars,8 etc.

In contrast to vertical spin valves, lateral spin valves are
characterized by their multiterminal functionalities and so
are more favorable for integration into semiconductor elec-
tronics. Due to increased spacing between terminals, efficient
spin injection and detection have been an interesting issue.
The spin injection and detection experiments in the two-
terminal geometry are obscured by other effects such as an-
isotropic magnetoresistance, Hall effect, etc. This defect was
overcome by adopting the nonlocal spin-valve geometry9

similar to the schematic device structure in Fig. 1. The origi-
nal spin-valve devices contain two FM electrodes �vs three
FM electrodes in Fig. 1� contacting the nonmagnetic base
electrode. In this lateral spin-valve system, the spin transport
was clearly observed with Al wires10 by spatially separating
the spin current path from the charge current path and
thereby removing other undesirable effects. The spin-

polarized current flows from the left of N �base electrode�
into F1. That is, spin-polarized electrons are injected from F1
into base electrode N and is drained to the left of N. Due to
asymmetry of two spin states in FM, the number of injected
spin-up and spin-down electrons is different. In addition to
charge current in the left of N �x�L1�, diffusion of injected
spins generates spin current flowing to left and right of N
symmetrically. Pure spin current to the right of N was
detected9–11 with another FM electrode by measuring the
spin-dependent nonlocal voltage drop. The nonlocal spin in-
jection and detection technique was also used to observe12,13

the �inverse� spin Hall effect in diffusive nonmagnetic me-
tallic strips. In these experiments, the spatial separation of
charge and spin currents as well as the efficient spin injection
is essential to observing the charge Hall voltage induced by
the spin current.

Recently experimental groups14–17 studied the spin trans-
port in the lateral spin valves with the three FM electrodes as
shown in Fig. 1. F1 is the spin-injection electrode �Fsi� as
usual, while F2 and F3 are the nonlocal voltage probes lo-
cated outside the charge current path. While the spin-
polarized electrons are injected from F1 into N and are
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FIG. 1. �Color online� Schematic display of the lateral spin-
valve system with three ferromagnetic electrodes. �a� Ferromagnetic
electrodes are labeled as F1, F2, and F3 from left to right. The base
electrode is denoted as N. Spins are injected from F1 to N by the
spin-polarized current I flowing from the left end of N into F1. The
electrode F1 is called the spin-injecting probe, while Fi with i�1
will be called the nonlocal �voltage� probe in this paper. �b� The
one-dimensional model geometry of the spin-valve system in �a�.
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drained into the left of N, the transresistance �TR� is mea-
sured between F1 and F2 or between F1 and F3. In the
former case, F2 is the spin-detecting electrode Fsd and F3 is
the additional electrode Fa. In the latter case, the roles of F2
and F3 are switched. The important issue is how sensitively
the transresistance is affected by Fa.

One experimental group14 found that Fa can drain the spin
current and thereby significantly suppress the transresistance.
They concluded that such additional FM electrode is relevant
to the spin injection and accumulation in the multiterminal
lateral spin valves. On the other hand, another group16 found
that the transresistance is weakly affected by Fa even when
the contact resistance between Fa and N is Ohmic. Moreover
the transresistance was observed16 to be independent of the
magnetization orientation of Fa �parallel or antiparallel to
that of Fsi�. They concluded that such additional FM elec-
trodes are irrelevant to the spin injection and accumulation in
the multiterminal lateral spin valves. The existing experi-
mental results seem to be contradictory to each other.

Motivated by this experimental situation, we study theo-
retically the spin transport in the lateral spin valve with three
ferromagnetic electrodes as schematically shown in Fig. 1.
We adopt the semiclassical spin drift-diffusion �SDD�
equation9,18 for the one-dimensional device structure and
study the mutual effect of FM electrodes on their nonlocal
spin signals such as nonlocal voltage drop and leakage spin
current. We find that the efficiency of the spin current leak-
age into FM electrodes depends on the relative magnitude of
junction resistance and the bulk resistance �defined over
spin-diffusion length �SDL�� in FM and N electrodes. The
voltage drop in Fsd is proportional to its leakage spin current
with the proportionality constant given by the effective spin
resistance which depends on the magnetization orientation of
Fsd. Nonlocal spin signals are sensitive to the position of Fa
relative to the positions of Fsi and Fsd. When Fa is located in
between Fsi and Fsd, the transresistance can be either signifi-
cantly or weakly affected by Fa depending on the relative
magnitude of junction resistance and spin resistance. The
effect of Fa is weak when Fa is located outside the region
between Fsi and Fsd. Even though the magnitude of the spin
current and nonlocal spin signals may be modified by Fa, the
flow direction of the spin current in the whole device is set
by the magnetization orientation of Fsi and so the nonlocal
spin signals are independent of the magnetization orientation
of Fa. This surprising result is already observed16 in experi-
ments and is the direct consequence of no charge current in
Fa. Based on decoupling of charge and spin modes in the
SDD equation and the Kirchhoff rules at the junction, we
also show that the relationship between nonlocal spin signals
and magnetization holds true even in realistic three-
dimensional samples. These interesting properties, in fact,
originate from zero charge current in nonlocal voltage elec-
trodes. Irrelevance of magnetization orientation of additional
FM electrode to nonlocal spin signals implies that even ad-
ditional nonmagnetic electrode can modify nonlocal spin sig-
nals in the spin-detecting probe. Our theoretical study may
be useful for clarifying the conflicting roles14–17 of an addi-
tional FM electrode in the lateral spin-valve devices. In ad-
dition, our study is relevant to device applications because
the multiterminal functionality is essential for device appli-
cations of lateral spin valves.

The rest of this paper is organized as follows. In Sec. II,
the spin drift-diffusion equation is briefly introduced and the
detailed algebras for the lateral spin valve with three FM
electrodes are included. The results of our work for spin
valves relevant to experiments are presented in Sec. III. In
Sec. IV, our work is summarized and its relevance to experi-
ments is discussed. Some algebraic details and interesting
results are included in Appendixes A–C.

II. FORMALISM

From now on we are going to confine our discussion to
the collinear magnetizations of three FM electrodes in spin
valves and so we consider the spin-polarized transport in a
steady state. The noncollinear magnetizations go beyond the
scope of our paper since the current flow in the noncollinear
magnetizations generates the spin transfer torque and induces
the magnetization dynamics. In the collinear and diffusive
transport, the spin drift-diffusion equations9,18 have been
very useful for understanding phenomenologically the spin-
polarized transport in the spin-valve systems. Later the SDD
equations were derived19 from the semiclassical Boltzmann
equation under the assumption that the SDL is larger than the
mean-free path �MFP�. Using the numerical solution of the
spin-dependent Boltzmann equation, the validity of the SDD
equations was further extended20 to the case when the SDL is
comparable to the MFP. The SDD equations have been
widely used for analyzing the spin-injection experiments in
various device geometries. The SDD formalism was also ap-
plied to the study of spin transfer torque21–23 in the case of
noncollinear magnetizations.

The SDD equations in the collinear magnetizations are
written down for the spin-dependent electrochemical poten-
tial �� and electric current density j�. Here �=� represents
the spin-up �+� and spin-down �−� states. The presence of the
spin-flip scattering in bulk mixes two spin states and the
SDD equations can be written down in a matrix form,

�2��+

�−
� =�

1

D+�+−
−

1

D+�+−

−
1

D−�−+

1

D−�−+

���+

�−
� , �1�

j� =
��

e
� ��. �2�

Here D� is the diffusion constant for spin direction �=� and
�+− is the average spin-flip time for an electron from the spin
direction + to −. �� is the conductivity for electrons with
spin � and e is the absolute value of electron charge.

The matrix differential equation for the electrochemical
potential can be solved24 by analyzing the eigenvalues and
eigenvectors of the matrix in the SDD equation. One eigen-
value is 0 and the corresponding eigenvector is � 1

1 �. The
other eigenvalue defines the spin-diffusion length 	 and is
given by the expression
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	2 =
1

D+�+−
+

1

D−�−+
, �3�

and its eigenvector is �
�+

−1

−�−
−1 �. To find this form of the eigen-

vector, the Einstein relation as well as the detailed balance
relation is already invoked. Obviously the first eigenvector
�charge mode� does not discriminate between two spin states,
while the second one �spin mode� does.

In this section we analyze the spin-polarized transport in
the spin-valve system based on the one-dimensional SDD
equations. The device structure is displayed in Fig. 1�a�,
where the base electrode is contacted to three FM electrodes.
Our primary goal is to understand the mutual influence of the
ferromagnetic electrodes on the nonlocal spin signals such as
the voltage drops and the leakage spin currents. FM leads are
labeled as Fi with i=1,2 ,3 from left to right. The one-
dimensional geometry, corresponding to the device structure,
is displayed in Fig. 1�b�, where the junctions between the
base electrode and the FM leads are labeled as x=Li
�i=1,2 ,3�.

In experiments, the base electrode is nonmagnetic, but we
are going to consider the case of magnetic base electrode
with its nonzero bulk spin polarization �SP� 
. Nonmagnetic
case is recovered by a simple replacement 
=0. The SP in
each FM lead is denoted as 
i which is defined by the spin
asymmetry in the spin-dependent conductivity �i�,


i =
�i+ − �i−

�i+ + �i−
. �4�

With the total conductivity �i=�i++�i−, the spin-up and
spin-down conductivities can be written as

�i� =
1

2
�1 � 
i��i. �5�

For the base electrode, the spin polarization �
� in conduc-
tivity and the spin-dependent conductivities ���� are defined
in a similar manner.

When the spin-polarized electrons are injected from F1
into the base electrode N and are drained to left, the electro-
chemical potential in the FM leads can be written as

1

e
��i+

�i−
� = 	 I

�1A1
y�i,1 − Vi
�1

1
� − IiRie

−y/	i� �1 + 
i�−1

− �1 − 
i�−1 � .

�6�

Here �i,1 is the Kronecker delta function. The spin-dependent
current is determined by the equation

Ii� = Ai
�i�

e

d

dy
�i�. �7�

The charge current is given by the expression Ici= Ii++ Ii−
= I�i,1 and flows only in F1 but not in Fi with i�1. The ith
FM lead is contacted to the base electrode at x=Li. Ai, 	i, �i,
and 
i are the cross-sectional area, the spin-diffusion length,
conductivity, and bulk spin polarization in conductivity of
the ith FM lead, respectively. Ri, defined by the relation

Ri =
	i

�iAi
, �8�

is the resistance of the FM electrode over the spin-diffusion
length. Due to an exponential decay of spin current, this
definition of resistance makes sense physically when discuss-
ing the spin current. Vi is the voltage drop at each ferromag-
netic electrode far away from the junction with the base elec-
trode and is induced by the nonequilibrium spin injection and
diffusion. Note that the common Fermi energy is dropped in
writing the electrochemical potentials in this paper because
the overall constant energy shift does not change the physics.
The spin current in Fi Ii

s= Ii+− Ii− is given by the expression

Ii
s = 
1I�i,1 + Iie

−y/	i. �9�

The first term is the spin-polarized driving current, while the
second comes from the spin accumulation and diffusion. Al-
though no charge current flows in the region x�L1, the spin
current is induced in the base electrode due to the spin injec-
tion, accumulation, and diffusion. The spin current decays
exponentially over the spin-diffusion length and in turn leaks
into the other FM electrodes. Ii measures the magnitude of
this leakage spin current at the interface between the base
electrode and Fi. The leakage spin current also decays expo-
nentially over the SDL in the FM electrodes. The set of six
unknown parameters �Vi , Ii� is to be determined by the
Kirchhoff rules at the junctions. Note that Vi and Ii are null
for i�1 when the injected current is not spin polarized. V1
can be nonzero for the tunneling barrier even when the in-
jected current is not spin polarized. Hence we may call
�Vi , Ii� for i�1 as the nonlocal spin signals.

In the common base electrode, we have the electrochemi-
cal potential for spin-up �+� and spin-down �−� electrons,

1

e
��+

�−
� =

I

�A
�x − L1�
�L1 − x��1

1
�

− 

i

JiRe−�x−Li�/	� �1 + 
�−1

− �1 − 
�−1 � . �10�

Here 
�x� is the step function and the spin-dependent current
is computed from

I� =
A��

e

d��

dx
. �11�

A, 	, �, and 
 are the cross-sectional area, the spin-diffusion
length, conductivity, and bulk spin polarization in conductiv-
ity of the base electrode, respectively. R, defined by the re-
lation

R =
	

�A
, �12�

is the resistance over the spin-diffusion length in the base
electrode. The charge current Ic= I++ I−= I
�L1−x� flows
only at the section x�L1 and the spin current Is= I+− I− is
given by the equation
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IN
s = 
I
�L1 − x� + 


i

Ji sgn�x − Li�e−�x−Li�/	. �13�

The additional three unknown parameters �Ji� are introduced
for the base electrode. Ji represents the redistribution of spin
current in the base electrode due to its leakage into the volt-
age probes �FM electrodes with i=2,3�.

The electrochemical potentials are constructed such that
the charge current is conserved at any junction in the device
�charge continuity equation�. No net charge current flows to
the right of x=L1 and the currents for spin-up and spin-down
electrons are equal in their magnitude and opposite in their
sign or flowing direction. This symmetry in spin current is
strictly obeyed in the nonlocal spin-valve geometry even in
the presence of the multiple ferromagnetic electrodes to the
right of the spin-injecting FM electrode F1. Obviously the
spin currents Ii and Ji are modified by the presence of other
FM electrodes, which is our main research interest in this
work.

There are nine unknown parameters �Vi , Ii ,Ji� �i=1,2 ,3�,
which should be determined by the boundary conditions or
Kirchhoff rules at the junctions. As already mentioned above,
the electrochemical potentials are constructed such that the
charge current is conserved. In our work, the spin-flip scat-
tering is neglected at the interface but is taken into account in
bulks. In this case, the spin current is conserved at each
junction and the following relations are obtained:

Ji =
1

2
�
 − 
1�I�i,1 −

1

2
Ii. �14�

We consider the case of dirty interface between the ferro-
magnetic electrodes and the base electrode. Due to a finite
value of resistance at the interface, the electrochemical po-
tential across the junction is not continuous and should be
determined by Ohm’s law,19,24,25

1

e
��i� = Ii��y = 0+�Rti�. �15�

Here ��i� is the difference of the electrochemical potentials
at x=Li between the base electrode and the Fi electrode. Rti�
is the spin-dependent junction resistance between the base
electrode and Fi and is defined in terms of the spin polariza-
tion �i of junction resistance,

Rti� =
2Rti

1 � �i
. �16�

Rti is the total junction resistance or Rti=Rti+Rti− / �Rti+
+Rti−�. The clean or transparent contact can be recovered by
a simple replacement Rti=0.

For the sign of 
’s �spin polarization�, we are going to
adopt the following convention. When the spin-up �spin-
down� electrons belong to the majority �minority� channel at
the Fermi level, the sign of 
’s is positive. On the other hand,
the sign of 
’s is negative when the spin-up �spin-down�
electrons belong to the minority �majority� channel. Accord-
ing to our convention, the sign of 
’s is reversed under the

magnetization reversal. The same convention applies to the
sign of �’s which are introduced to define the spin polariza-
tion in the resistance of the interface.

After some algebra as detailed in Appendix A, we find the
expressions for Ii, Ji, and Vi, which contain all the informa-
tion about the spin-polarized transport in the one-
dimensional spin valve,

Ii

I
= − �
1 − 
��i,1 + Gi1��
1 − 
�R1 + ��1 − 
�Rt1� ,

�17�

Ji

I
= −

1

2
Gi1��
1 − 
�R1 + ��1 − 
�Rt1� , �18�

Vi

I
= − ��
 − 
1�2R1 + �
2 − 2
�1 + 1�Rt1��i,1 + ��
i − 
�Ri

+ ��i − 
�Rti�Gi1��
1 − 
�R1 + ��1 − 
�Rt1� . �19�

Gij is the element of the matrix G defined in Eq. �A12� of
Appendix A and has the dimension of conductance. The
other set of material parameters, Ri and Rti, is introduced in
Appendix A and their definitions are repeated here for read-
ers,

Ri �
Ri

1 − 
i
2 , R �

R
1 − 
2 , Rti �

Rti

1 − �i
2 . �20�

These material parameters need our special attention. They
have the dimension of resistance and deserve their own ter-
minology. They are already called the spin resistance in the
literature. First of all, the spin resistance is introduced to
simplify the algebra as shown in Appendix A. As the above
equations show, this spin resistance determines the nonlocal
spin signals such as the voltage drops and the leakage spin
currents in the voltage probes. More physical insights on the
spin resistance are elaborated on in Appendix B.

Since we are interested in the nonlocal transport measure-
ments, we focus on the leakage spin currents and voltage
drops in the voltage probes �Fi with i�1�. The leakage spin
current in the nonlocal voltage probes is given by the expres-
sion �Eq. �17��

Ii = Gi1��
1 − 
�R1 + ��1 − 
�Rt1�I . �21�

This relation for the nonlocal spin current Ii suggests that the
conductance matrix G contains all the information about the
mutual effect of nonlocal voltage probes. Since the conduc-
tance Gi1 does not depend on the magnetization configura-
tion of the FM electrodes, the leaking spin current does not
depend on the magnetization orientation of voltage probes
but instead depends on the magnetization orientation of the
spin-injecting FM electrode �F1� and the base electrode �if
ferromagnetic, 
�0�. This important observation can be un-
derstood as follows. The flow direction of spin current �the
sign of Ii�, in the base electrode as well as in the FM elec-
trodes, is obviously determined by the magnetization con-
figuration in the spin-injecting electrode. This means that the
flow direction of spin current cannot be altered by the change
in magnetic configurations in nonlocal voltage probes. This
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is due to the fact that the nonequilibrium spin current is
generated by the spin-injecting electrode and not by nonlocal
voltage probes. Another important observation is that the
magnitude of spin current or Ii is not modified under the
magnetization reversal of nonlocal voltage probes, which in
fact derives from the symmetry in the SDD equations. This
property of Ii derives from decoupling of spin and charge
modes in SDD equations as well as the zero charge current in
nonlocal voltage probes. Detailed analysis can be found in
Appendix C. The relation Ji=−Ii /2 simply reflects the con-
servation of spin current at the interface between the voltage
probe and the base electrode.

V1
s defined below is ubiquitous in the expressions of Ii and

Vi,

V1
s = ��
1 − 
�R1 + ��1 − 
�Rt1�I . �22�

We may call V1
s as the spin potential which is the source

from the spin-injecting electrode and drives the spin current
in the spin valve. The leakage spin current in nonlocal probes
can be written as

Ii = Gi1V1
s . �23�

The spin current in the spin-valve device can be expressed in
terms of the spin potential V1

s and the conductance matrix G
as

IN
s = 
I
�L1 − x� −

V1
s

2 

i

Gi1 sgn�x − Li�e−�x−Li�/	, �24�

I1
s = 
1I�1 − e−y/	1� + �G11V1

s + 
I�e−y/	1, �25�

Ii
s = Gi1V1

se−y/	i, i � 1. �26�

The voltage drop in the nonlocal voltage probes is given
by the expression �Eq. �19��

Vi = ��
i − 
�Ri + ��i − 
�Rti�Gi1��
1 − 
�R1 + ��1 − 
�Rt1�I .

�27�

Note that the voltage drop can be written as the product of
spin current and some sort of spin resistance as

Vi = ��
i − 
�Ri + ��i − 
�Rti�Ii. �28�

Vi is the effective measure of weighted averaging of the
spin-up and spin-down electrochemical potentials in Fi and
so depends on the magnetization configuration of Fi. In ad-
dition, Vi can be understood as a shift in the Fermi level in
order to satisfy the condition of zero charge current in the
nonlocal voltage probes �see Appendix B for details�. Al-
though the leakage spin current Ii in Fi is independent of the
magnetization orientations of all nonlocal voltage probes
�parallel or antiparallel to that of spin-injecting probe�, the
voltage drop Vi depends on the magnetization orientation of
Fi, the spin-injecting probe, and the base electrode but not on
that of other voltage probes.

III. RESULTS

In this section our discussion is confined to the spin-valve
system with three ferromagnetic electrodes and nonmagnetic

�
=0� base electrode. The current I is injected from the left
of nonmagnetic base electrode and is drained to F1 �see Fig.
1�. Although the charge current is null to the right of the
contact between F1 and the base electrode, the finite spin
current is induced everywhere by the spin injection, accumu-
lation, and diffusion. With two nonlocal FM electrodes �la-
beled as F2 and F3� contacted with the nonmagnetic base
electrode to the right of F1, we want to study the mutual
influence of two nonlocal FM electrodes on their voltage
drops and leakage spin currents or nonlocal spin signals.

With three FM electrodes, the dimension of conductance
matrix G is 3�3,

G−1 = � r1
1
2Rf3

1
2Rf2

1
2Rf3 r2

1
2Rf1

1
2Rf2

1
2Rf1 r3

� . �29�

Here ri=Ri+Rti+
1
2R for i=1,2 ,3 and f1=e−L23/	, f2=e−L13/	,

and f3=e−L12/	, where Lij = �Li−Lj� is the distance between the
contacts of the ith and jth FM electrodes with the base elec-
trode. After inserting the explicit expressions of Gi1 into Eq.
�21� with 
=0 or

Ii = Gi1V1
s , V1

s = �
1R1 + �1Rt1�I , �30�

we find the leakage spin currents I2 and I3 in the nonlocal
electrodes to be given by the expressions

I2 = −
IR

2D
e−L12/	�
1R1 + �1Rt1�	R3 + Rt3 +

1

2
�1 − e−2L23/	�R
 ,

�31�

I3 = −
IR

2D
e−L13/	�
1R1 + �1Rt1��R2 + Rt2� . �32�

Here D is the determinant of the matrix G−1 and is given by
the expression

D = �
i=1

3 �Ri + Rti +
1

2
R� −

1

4
R2


i=1

3 �Ri + Rti +
�− 1�i+1

2
R� f i

2.

�33�

Obviously the exponentially decaying factor can be extracted
out as Gi1=e−L1i/	gi1 �i=2,3�, where gi1 is negative. As men-
tioned in Sec. II, the leaking spin current �I2 and I3� does not
depend on the magnetization configuration of the nonlocal
voltage probes �F2 and F3� but only on the magnetization
configuration of the spin-injecting electrode �F1�. This is
clearly explained by the fact that the spin current is generated
by the spin-injecting electrode.

The nonlocal voltage drops V2 and V3 are related to their
leakage spin currents as

Vi = �
iRi + �iRti�Ii, i = 2,3. �34�

This relation suggests that the nonlocal voltage drop Vi is
proportional to the corresponding nonlocal spin current Ii
and the proportionality constant is the effective spin resis-
tance which depends on the magnetization orientation of Fi.
This resistance is the intrinsic material properties of the rel-
evant FM electrode, so that the effect of the other FM elec-
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trode is completely embedded into the nonlocal spin current.
This means that we can discuss the effect of multiple FM
electrodes on transresistance in terms of the leakage spin
current.

From Eqs. �31�, �32�, and �34�, transresistances
�Rs2=V2 / I and Rs3=V3 / I� in F2 and F3 electrodes are re-
duced to the following forms:

Rs2 = −
R

2D
e−L12/	�
1R1 + �1Rt1��
2R2 + �2Rt2�

�	R3 + Rt3 +
1

2
�1 − e−2L23/	�R
 , �35�

Rs3 = −
R

2D
e−L13/	�
1R1 + �1Rt1��R2 + Rt2��
3R3 + �3Rt3� .

�36�

We denote the transresistances in the absence of an addi-
tional FM electrode using the superscript as Rs2

�0� and Rs3
�0�.

The same notations with superscript will be used for nonlo-
cal voltage drop and spin current. The effect of other nonlo-
cal FM electrode on the transresistance can be quantified by
computing the ratio Rsi /Rsi

�0� with i=2,3. It follows from Eqs.
�30� and �34� that

Rsi

Rsi
�0� =

Vi

Vi
�0� =

Ii

Ii
�0� =

Gi1

Gi1
�0� . �37�

The effect of an additional FM electrode on the transresis-
tance can be measured by how much the nonlocal spin cur-
rent is reduced or by the change in the conductance matrix G
under the other FM electrode.

Two important facts can be read off from Eqs. �35� and
�36�. �i� The transresistance of one FM electrode �say F3�
does not depend on magnetization orientation of the other
electrode �say F2�. That is, the transresistance Rs3 in F3 does
not depend on the spin polarization, 
2 and �2, of F2. In Ref.
16, the transresistance was observed to be independent of the
magnetization orientation �parallel or antiparallel to F3� of
the intervening FM electrode F2, which is supported by our
theoretical results. However this fact does not necessarily
mean16 that the observed transresistance is not influenced by
the additional FM electrode. The transresistance can be ei-
ther significantly changed or weakly influenced by the pres-
ence of the additional intervening FM electrode, depending
on sample and material parameters as we shall show below.
�ii� The transresistance can be modified15 even when the ad-
ditional contacting electrode is nonmagnetic. The relative
magnitude of the interface and bulk resistance �defined over
the SDL� plays an important role in determining the transre-
sistance. Irrespective of the magnetic or nonmagnetic nature
of the intervening electrode, the transresistance will be influ-
enced only by spin resistance and the interface quality.

According to Eq. �37�, the effect of an additional FM
electrode on the transresistance is equivalent to its effect on
the nonlocal leakage spin current. After the spin current is
injected from F1 electrode, it will flow into both directions in
N and will leak into nonlocal probes. From this perspective
we can expect that the effect will be much stronger when an

additional FM electrode lies in between two �spin-injecting
and spin-detecting� FM electrodes than when it lies outside
two electrodes. In the former case, the nonlocal spin current
in spin-detecting probe will be reduced proportionally by the
amount of spin current drained into an intervening electrode.
In the latter case, the injected spin current leaks into the
spin-detecting probe first and then into an additional FM
electrode, so that the effect will be weaker. Mathematically
this difference between two cases comes from the asymmetry
between Eqs. �31� and �32�. Under the index exchange 2↔3,
I2 and I3 are inequivalent due to the additional term
�1−e−2L23/	�R /2 in I2.

To be more quantitative, let us consider I2 when f i
2’s in

Eq. �33� are all much less than unity. This is a good approxi-
mation in all-metallic lateral spin-valve systems since the
spacing between the electrodes is comparable to the SDL
which is on the order of few hundred nanometers. Under this
approximation, we can readily show that

I2 � I2
�0�. �38�

Therefore, Rs2=V2 / I is very weakly influenced by the FM
electrode F3 and the transresistance is almost the same as
that in the absence of the electrode F3. That is, the transre-
sistance is not much changed by the additional electrode �F3�
when it is contacted to the outside of F1 �spin current in-
jected� and F2 �spin current detected�. However, the effect of
an additional FM electrode F3 cannot be neglected if F2 and
F3 are closer to each other than the SDL. So much for this
case.

We now focus on the case when an additional FM elec-
trode lies in between the spin-injecting and spin-detecting
electrodes. That is, we study the effect of F2 on the nonlocal
spin signals for F3. In the absence of the intervening FM
electrode F2, Rs3

�0� is25,26

Rs3
�0� = −

R

2D0
e−L13/	�
1R1 + �1Rt1��
3R3 + �3Rt3� , �39�

D0 = �R1 + Rt1 +
1

2
R��R3 + Rt3 +

1

2
R� −

1

4
R2e−2L13/	.

�40�

Note also that Rs3
�0� can be obtained from Rs3 by taking the

limit Rt2→� or when the second intervening F2 is effec-
tively decoupled from the nonmagnetic base electrode. The
effect of the second intervening electrode F2 on the transre-
sistance Rs3 can be quantified by computing the ratio
Rs3 /Rs3

�0�,

Rs3

Rs3
�0� =

D0

D
�R2 + Rt2� . �41�

Below this general relation will be reduced to the simple
forms case by case.

In order to provide some physical insights, let us consider
the case when f i

2�1. We find the simple form of Rs3 /Rs3
�0� as
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Rs3

Rs3
�0� �

R2 + Rt2

R2 + Rt2 + 1
2R

. �42�

The reduction in Rs3 stems from the leakage of spin current
into the intervening electrode F2. The efficiency of spin leak-
age into F2 is quantified by the relative magnitude of the
serial resistance R2+Rt2 in F2 and the resistance R in base
electrode over the spin-diffusion length. We can understand
qualitatively the results of Eq. �42� as follows. Spins are
injected from F1 into the base electrode N and in turn diffuse
into left and right of N. That is, the spin current flows in N
and leaks into nonlocal probes. Just like charge transport, the
spin current at the junction with F2 will continue to flow in
N and also leak into F2. If the effective spin resistance R2
+Rt2 of F2 is much larger than the spin resistance R of N, the
leakage into F2 will be negligible and the spin current will
mostly continue to flow in N. The leakage spin current I2 is
larger �smaller� if the effective spin resistance R2+Rt2 of F2
is smaller �larger� compared to the spin resistance R of N.
Obviously the leakage into F2 reduces the spin current in N
and in turn reduces the leakage spin current I3. The larger
�smaller� R2+Rt2 is, the larger �smaller� I3 is.

The spin-diffusion length �SDL� is on the order of a few
hundred nanometers in nonmagnetic metals and the SDL in
FM metals is on the order of a few nanometers to a few tens
of nanometers. The resistivity depends on the sample quality
such as the impurities, defects, etc. Although SDL is 2 orders
of magnitude different between FM and NM, the relative
magnitude of resistance �RF: ferromagnetic metal and RN:
nonmagnetic metal� defined over the SDL can be varied from
device to device. Roughly RN�RF in the spin-valve devices.
Usually the interface between the FM electrodes and the
nonmagnetic base electrode is Ohmic �Rt� but not in the tun-
neling regime. In real materials, we have the following order
in resistance: RN�RF�Rt. For our theoretical study, we will
consider both cases of Ohmic and tunneling interfaces, as
well as other parameter regimes.

A. Clean F/N interface

We consider the clean interface between the base elec-
trode and the FM electrodes, Ri, R�Rti. To get the simple
expression of Rs3, we take the limit Rti=0. Suppose that the
FM electrodes are the same material with roughly the same
Ri�RF for i=1,2 ,3. If the exponentially decaying factors
�f i

2� are negligible, we find the simple form of the transresis-
tance ratio as

Rs3

Rs3
�0� �

2RF

2RF + R
, �43�

Rs3
�0� � − 
1
3

2RRF
2

�2RF + R�2e−L13/	. �44�

When RF�R, the transresistance will be strongly suppressed
by the additional intervening FM electrode. On the other
hand, the transresistance will be fractionally reduced when
RF is comparable to R. In the other extreme case of RF�R,
the transresistance will not be affected by the intervening FM
electrode.

As noted above, the transresistance can be affected by the
nonmagnetic electrode, 
2=0 and R2=RN. Let us study this
case in detail. In the clean limit of interface,

Rs3

Rs3
�0� �

2RN

2RF + R
, �45�

Rs3
�0� � − 
1
3

2RRF
2

�2RF + R�2e−L13/	. �46�

Since RN=�2	2 /A2 with 
2=0, we obtain the similar result
as in the previous paragraph depending on the relative mag-
nitude of R, RN, and RF. If the contacts between the base
electrode and F1 and F3 are clean, but the contact with the
intervening electrode F2 is in the tunneling regime, the effect
of an additional electrode on the transresistance is negligible.

B. Tunneling F/N interface

When the junction resistance is dominant compared to the
resistance over the spin-diffusion length in the FM lead and
the base electrode or when Rti�Rj ,R, the expressions of the
voltage drop �Eqs. �35� and �36�� are simplified as

V2

I
� −

R

2
�1�2e−L12/	, �47�

V3

I
� −

R

2
�1�3e−L13/	. �48�

The voltage drop at each junction is not influenced by the
presence of the other FM leads when the junctions lie in the
tunneling regime. In general, the expression of V3 is not af-
fected by the presence of the second FM lead �additional FM
lead� as long as the contact is in the tunneling regime. When
Rt2�Ri, Rs3=Rs3

�0�, so that the second FM lead is effectively
disconnected from the base electrode.

When the accumulated spin is diffused efficiently into the
second intervening FM lead, its effect may not be negligible.
We still assume that the contacts with F1 and F3 lie in the
tunneling regime. Let us see the extreme case of a transpar-
ent contact of F2 electrode to the base electrode. In this case,
we may set Rt2=0 and the desired voltage drop is given by
the expression

Rs3

Rs3
�0� =

2R2

2R2 + R
, �49�

Rs3
�0� = −

R

2
�1�3e−L13/	. �50�

That is, the transresistance can be changed by the second
intervening electrode F2 if F2 is in clean contact with the
base electrode or if spin leakage into F2 is efficient.

IV. DISCUSSION AND SUMMARY

Using the one-dimensional spin drift-diffusion equations,
we studied theoretically the mutual effect of ferromagnetic
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electrodes on nonlocal spin signals �the leakage spin currents
and the voltage drops� in the lateral spin valve with three
ferromagnetic electrodes. We found the generic expression of
the leakage spin current �Eq. �21�� and also a very simple
relation �Eq. �28�� between the nonlocal voltage drop and the
leakage spin current.

Equation �37� tells us that the effect of an additional elec-
trode on the transresistance can be discussed in terms of the
leakage spin current and in turn in terms of the conductance
matrix. The measured nonlocal spin signals depend on the
position of an additional FM electrode relative to the spin-
injecting and spin-detecting electrodes. When the additional
electrode lies outside the two FM electrodes, nonlocal spin
signals are found to be weakly influenced due to the expo-
nentially decaying spin coherence over the SDL. On the
other hand, when it is located in between the two FM elec-
trodes, the nonlocal spin signals can be strongly modified
provided the junction resistance is lower than or comparable
to the spin resistance defined over the spin-diffusion length
in the FM electrodes and the nonmagnetic base electrode. If
the junction resistance is high, the nonlocal spin signals are
weakly modified even when the additional FM electrode is
located in between the two FM electrodes The most general
expression for the transresistance ratio is given by Eq. �41�.
In general, the nonlocal spin signal is not much modified
when the additional electrode is in tunneling contact with the
base electrode but is fractionally reduced when the contact is
Ohmic. We also found that the nonlocal spin signals are in-
dependent of the magnetization orientation of the additional
FM electrode, which agrees with the experimental
observation.16 This result suggests that even the intervening
nonmagnetic electrode can change nonlocal spin signals,
which was already observed15 experimentally.

Since our theoretical study is based on the one-
dimensional device structure, some care is needed when we
try to apply our theoretical results to interpretation of experi-
mental data. Strictly speaking, the experimental spin-valve
structure is not one dimension in terms of the current distri-
bution. Hamrle et al.27 numerically showed that the nonlocal
voltage drop depends strongly on the spatial distribution of
the spin-polarized current. The one-dimensional approxima-
tion is valid when the current is uniformly distributed
through the contact. When the contact is clean between the
FM electrode and the base nonmagnetic electrode, the cur-
rent flow may well not be uniform through the interface16

and may be short circuited. In this case, the nonlocal spin
signals may deviate from its theoretical estimate based on
one-dimensional SDD equations. Keeping these restrictions
in mind, let us apply our theoretical results to two experi-
mental works.14,16

For numerical estimation �Rs /Rs0=Rs3 /Rs3
�0� in this sec-

tion�, we take examples of Co/Cu/Co and Py/Cu/Py lateral
spin valves and use the following sample size and material
parameters. The thickness and width of the nonmagnetic
base electrode are taken as 80 and 300 nm, respectively. The
width of all the ferromagnetic layers is assumed to be the
same as 100 nm. The separation between nearest ferromag-
netic layers is taken as 200 nm, which gives 300 nm of
center-to-center distance. We use material parameters mea-
sured at low temperatures. The parameters for Cu are

1 /�Cu=6�10−9 � m �Ref. 28� and 	Cu=1 �m.10 For Co,
we use 
Co=0.46,28 �Co/Cu=0.77,28 1 /�Co�1−
Co

2 �=7.5
�10−8 � m,28 	Co=59 nm,29 and RCo/CuA / �1−�Co/Cu�2

=0.52�10−15 � m2.28 For Py, we take 
Py=0.73,28 �Py/Cu
=0.70,28 1 /�Py�1−
Py

2 �=15.9�10−8 � m,28 	Py=5.5 nm,28

and RPy/CuA / �1−�Py/Cu�2=0.54�10−15 � m2.28

For the Co/Cu/Co spin valve, R /2=125 m�, R2
=150 m�, and Rt2=17 m� are obtained. The estimated
spin signal is reduced to the value Rs /Rs0=0.68 by the inter-
vening F2 electrode. V2 / I is also reduced by a factor of 0.87
due to F3 electrode. For the Py/Cu/Py spin valve, we have
R /2=125 m�, R2=29 m�, and Rt2=18 m�. The reduced
spin signal V3 / I by the F2 electrode is Rs /Rs0=0.46. V2 / I is
reduced by a factor of 0.87 due to F3 electrode.

Since the SDL of Co is rather long, R2 is comparable to
R /2 in the Co/Cu/Co case and Rs /Rs0 is large. Since, in the
Py/Cu, R /2 is larger than R2 and Rt2, Rs /Rs0 is small. The
rather significant reduction in estimated V2 / I in both cases
stems from our choice of the long SDL of Cu at low tem-
peratures. The long SDL means that the chemical-potential
splitting between opposite spin directions, although exponen-
tially decaying, remains significant up to the position of the
F3 electrode. The significant leakage of spin currents into F3
results in reduction in the spin signal. At room temperature,
the SDL of the base electrode �nonmagnetic metal� is a few
hundred nanometers such that the reduction in V2 / I by the F3
electrode is only a few percents. For the experimental con-
ditions in Refs. 14 and 16, R /2 is comparable to R2+Rt2 and
we can estimate theoretical value of Rs /Rs0 �Eq. �42��;
Rs /Rs0�0.5 although the observed Rs /Rs0 is smaller for Ref.
14 and is close to unity for Ref. 16.

As pointed out in Ref. 16, the contact between the Per-
malloy electrode and the base Ag wire is very clean and the
point injection and detection of current is suggested. In this
case, the current distribution in the devices may well be non-
uniform, so that our one-dimensional theory cannot be
straightforwardly applied. We believe that the nonuniform
current distribution is the main reason why some of our the-
oretical estimates are in poor agreement with the results of
Ref. 16. We may discuss the relevance of the device dimen-
sionality based on the effective spin resistance. According to
our theoretical analysis, nonlocal spin signals are determined
by the relative magnitude of junction resistance and spin
resistance in FM and NM electrodes. This relevant resistance
is defined under the assumption that the current distribution
is uniform in the device. When the current distribution is not
uniform as in real devices, we may still be able to define the
spin resistance using the effective cross-sectional area which
is smaller than the geometrical cross section of the sample.
Nonuniform current distribution tends to increase junction
resistance as well as spin resistance and will modify the mag-
nitude of nonlocal spin signals. This may be one of the rea-
sons for the discrepancy between two experimental
results.14,16

Nonlocal spin signals �the leakage spin current and the
voltage drop� in one nonlocal FM electrode are shown not to
depend on the magnetization orientation �parallel or antipar-
allel� of the other nonlocal FM electrode. We believe that this
symmetry of nonlocal spin signals is robust against the
sample dimensionality, although their magnitude is sensitive
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to samples. The spin current is generated by the spin-
injecting FM electrode and so its flow direction cannot be
changed by the magnetization orientation of nonlocal FM
electrodes. In addition, the magnitude of spin current does
not depend on the magnetization orientation of nonlocal FM
electrodes. This property derives from both decoupling of
spin and charge modes in the SDD equations and zero charge
current in nonlocal voltage probes. Hence our conclusion
about the relationship between nonlocal spin signals and
magnetization in nonlocal voltage probes will not depend on
the sample dimensionality and qualities. This point is dem-
onstrated more explicitly in Appendix C.

Finally, we would like to discuss the properties of transre-
sistance �TR� and �longitudinal� magnetoresistance �MR� in
spin valves under magnetization reversal. Obviously, both
TR and MR are modified under magnetization reversal of
two probing FM electrodes. Under magnetization reversal,
TR changes its sign while MR changes its value. Note that
MR, in general, consists of the two contributions: one part
�background� remains the same but the other changes its sign
under magnetization reversal. Let us consider the effect of an
additional FM electrode �Fa� on TR and MR. For the vertical
spin valves, it will not be easy to implement Fa. So we con-
sider TR and MR in the lateral spin valves with Fa. Usually
MR is obscured by other effects in the lateral spin valves as
mentioned before. However, with increased SDL, MR was
successfully measured30,31 in the carbon nanotube and
graphenes. To measure MR in the lateral spin valves of Fig.
1, F1 and F3 are both current and voltage probes. Based on
the results of Appendix C, we can argue that MR should be
independent of the magnetization orientation of F2 �Ref. 32�
because there is no charge current in F2 �an additional elec-
trode�. Explicit calculation,33 using the SDD equations, con-
firms this claim. That is, both TR and MR are independent of
the magnetization orientation of Fa. On the other hand, TR
and MR depend on the magnetization orientation of ferro-
magnetic electrodes through which the charge current flows.
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APPENDIX A: DETAILS IN ALGEBRA

In this appendix we show that the algebraic manipulation
can be highly simplified by a proper definition of material
parameters and by the vector and matrix notations. Kirchhoff
rules lead to the constraints given by Eqs. �14� and �15�.
Equation �15� can be written down explicitly leading to the
following six relations �i=1,2 ,3�:

�

j

JjR
1 � 


e−�Li−Lj�/	 − �Vi �
IiRi

1 � 
i
�

= ��1 � 
1�I�i,1 � Ii� �
Rti

1 � �i
. �A1�

For algebraic convenience, we introduce material parameters

Ri =
Ri

1 − 
i
2 , R =

R
1 − 
2 , Rti =

Rti

1 − �i
2 , �A2�

and Aij =e−�Li−Lj�/	. These material parameters highly simplify
the complicated algebra as well as determine the spin cur-
rents in the nonlocal voltage probes. Then the voltage drop
Vi can be written as

Vi = � IiRi�1 � 
i� � �1 � 
�R

j

AijJj

− �1 � �i�Rti��1 � 
1�I�i,1 � Ii� . �A3�

Addition and difference of two Vi’s lead to

Vi = − �1 − �1
1�Rt1I�i,1 + �
iRi + �iRti�Ii − 
R

j

AijJj ,

�A4�

and

�Ri + Rti�Ii − R

j

AijJj = ��1 − 
1�Rt1I�i,1. �A5�

It is much more convenient to introduce the matrix notation
for the algebraic manipulation. �I�= �I1I2I3�t, �J�= �J1J2J3�t,
�V�= �V1V2V3�t, and �1�= �100�t. Here the superscript t repre-
sents the transpose of row vectors, so that its effect is to
change them into column vectors. With these notations,
Kirchhoff rules can be written in compact forms as

�V� = − �1 − 
1�1�Rt1I�1� + �
̂R + �̂Rt��I� − 
RA�J� ,

�A6�

�J� = −
1

2
�I� +

1

2
�
 − 
1�I�1� , �A7�

0 = �R + Rt��I� − RA�J� + �
1 − �1�Rt1I�1� . �A8�

Here R and Rt are diagonal matrices with diagonal elements

Ri and Rti, respectively. Similarly, 
̂ and �̂ are diagonal ma-
trices with diagonal elements representing the spin polariza-
tion of each FM electrode and the junction resistance, respec-
tively. A is the matrix with its elements given by Aij.
Formally, the unknown parameters can be written in a more
compact matrix form as

�I� = �
 − 
1�I�1� + ��
1 − 
�R1 + ��1 − 
�Rt1�IG�1� ,

�A9�

�J� = −
1

2
��
1 − 
�R1 + ��1 − 
�Rt1�IG�1� , �A10�

�V� = − ��
 − 
1�2R1 + �
2 − 2
�1 + 1�Rt1�I�1� + ��
1 − 
�R1

+ ��1 − 
�Rt1� � ��
̂ − 
�R + ��̂ − 
�Rt�IG�1� . �A11�

Here the matrix G is defined by the expression
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G = 	R + Rt +
1

2
RA
−1

. �A12�

The matrix G, with the dimension of conductance, is inde-
pendent of magnetization configurations �parallel or antipar-
allel to the spin-injecting electrode F1� of the FM electrodes.
The set of parameters, Ii, Ji, and Vi, contains all the informa-
tion about the spin-polarized transport in nonlocal spin
valves. In components, we have the spin currents

Ii

I
= �
 − 
1��i,1 + Gi1��
1 − 
�R1 + ��1 − 
�Rt1� ,

�A13�

Ji

I
= −

1

2
Gi1��
1 − 
�R1 + ��1 − 
�Rt1� , �A14�

and the voltage drops in the FM electrodes

Vi

I
= − ��
 − 
1�2R1 + �
2 − 2
�1 + 1�Rt1��i,1

+ ��
i − 
�Ri + ��i − 
�Rti�Gi1

���
1 − 
�R1 + ��1 − 
�Rt1� . �A15�

Note that the final results are written down in a very compact
form, using material parameters as well as the conductance
matrix.

APPENDIX B: PHYSICAL MEANING OF SPIN
RESISTANCE

Spin resistance was defined in order to simplify the alge-
bra. In this appendix we are going to infuse some physical
meaning into spin resistance. Let us recast Eq. �A1� for
i�1 �nonlocal voltage probes� into a more illuminating form
as

�
Ui

1 � 

− Vi = �

Ii

2
� 2Rti

1 � �i
+

2Ri

1 � 
i
� , �B1�

where Ui acts as the effective electric potential of the base
electrode at the junction with Fi and is defined by

Ui = R

j

Jje
−�Li−Lj�/	. �B2�

For electrons with negative charge, Vi is the electric potential
for both spin directions far into Fi and �Ui / �1�
� is the
electric potential for spin-up and spin-down electrons, re-
spectively, of the base electrode at the junction with Fi. Refer
to Eqs. �6� and �10�. We can deduce that the current Ii /2 at
the interface flows into �out of� Fi for spin-up �spin-down�
electrons.

The left-hand side �LHS� of Eq. �B1� represents the elec-
tric potential difference for both spin directions between the
base electrode and Fi at the deep inside. The right-hand side
�RHS� is the product of the current Ii /2 and the effective
spin-dependent resistance. The sign in front represents cor-
rectly the flowing direction of the spin-up and spin-down
current, respectively. The first term in the parenthesis is the

spin-dependent tunnel resistance as defined in Eq. �16�. The
second term is none other than the spin resistance, which was
introduced in the main text. With this spin resistance, Eq.
�B1� is the effective Ohm’s law for the leakage spin-up and
spin-down currents.

When Ui is eliminated from Eq. �B1�, the relation be-
tween the nonlocal voltage drop Vi and the leakage spin cur-
rent Ii or Eq. �28� is obtained. From Eq. �B1�, we can deduce
the physical meaning of Vi. No charge current flows in the
nonlocal FM electrodes. Vi represents the shift of the elec-
trochemical potential in Fi to satisfy the constraint of no
charge current flow. If we eliminate Vi from Eq. �B1�, we
find the following relation:

Ii�Rti + Ri +
R

2
� = R


j�i

Jje
−�Li−Lj�/	. �B3�

The material parameters are defined in Appendix A. How do
we interpret this relation? This relation can be considered as
the Ohm’s law for the leakage spin current. The LHS is the
product of the spin current Ii and the effective resistance.
From the standpoint of Fi, the spin current Ii flows from both
sides of the base electrode �R� through the junction �Rti� and
into Fi �Ri�. Hence the effective resistance is R /2+Rti+Ri as
in the above equation. The RHS is the effective spin potential
which combines the source term from F1 and the sink terms
from other nonlocal FM electrodes.

APPENDIX C: DEPENDENCE ON MAGNETIZATION
DIRECTIONS: THREE-DIMENSIONAL CASE

One of the key results of our paper is the independence of
the spin accumulation, the spin current, and the nonlocal
voltage on the magnetization directions of electrodes. This
appendix is aimed to provide an insight into the origin of this
independence in three-dimensional situations. We again con-
sider the geometry in Fig. 1. Similar notations will be used.
The three-dimensional SDD equation is given by Eq. �1� and
the associated charge and spin current densities jc , js are
given by

jc =
1

e
� ��+�+ + �−�−� , �C1�

js =
1

e
� ��+�+ − �−�−� . �C2�

Similar relations hold for �i�, ji
c, and ji

s in the Fi electrode.
The system is subjected to the following boundary condi-
tions. From the condition of no leakage current to air or
insulating substrate,

n̂ · ��� = n̂i · ��i� = 0 �C3�

should hold at the sample boundaries facing air or insulating
substrate. Here n̂ and n̂i denote normal vectors perpendicular
to the boundaries. From the constraint of the current conti-
nuity applied to the interface between the base electrode and
the electrode Fi, one finds that the following relation should
hold at the interface:
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n̂ · ����� = n̂ · ��i��i�. �C4�

The Ohm’s law provides another boundary condition for the
interface,

1

e
��i� = Rti�n̂i · �

�i��i�

e
. �C5�

When combined with these boundary conditions, the SDD
equation completely fixes the spin-dependent electrochemi-
cal potentials. Here we remark that the current density
���i��i� /e�, instead of the current Ii�, appears in Eq. �C5�
and thus Rti� in Eq. �C5� amounts to the spin-dependent
junction resistance per unit area instead of the junction re-
sistance. We also remark that the tunneling barrier at a junc-
tion may not be uniform in realistic experimental situations
and such nonuniformity can be taken into account by simply
regarding Rti� as a position-dependent quantity since Eq.
�C5� remains still valid even for the nonuniform barrier as
long as the tunneling current remains perpendicular to the
interface.

In order to examine the dependence of the spin accumu-
lation on the magnetization directions, we re-express the in-
volved equations in terms of the spin accumulation �+−�−
and the charge potential ��+�++�−�−� /�. The SDD equa-
tion �Eq. �1�� is again decomposed into the following two
decoupled equations �spin mode and charge mode�,24

�2��+ − �−� =
1

	2 ��+ − �−� , �C6�

�2��+�+ + �−�−� = 0. �C7�

The boundary conditions for the spin accumulation can be
derived from Eq. �C3� and one obtains

n̂ · ���+ − �−� = n̂i · ���i+ − �i−� = 0. �C8�

From Eq. �C4�, one obtains

n̂ · ���i+ − �i−� =
�

�i

1 − 
2

2
� 1

1 + 
i
+

1

1 − 
i
�n̂ · ���+ − �−�

+
e

�i
� 1 + 


1 + 
i
−

1 − 


1 − 
i
�n̂ · ji

c, �C9�

and from Eq. �C5�, one obtains

1

e
���i+ − �i−� =

�iRti�1 − 
i
2�

4e
n̂ · ���i+ − �i−�

+
Rti�
i + �i�

2
n̂ · ji

c. �C10�

Now we are ready to discuss the magnetization direction
dependence of the spin accumulation, which is completely
fixed from its SDD equation �Eq. �C6�� and boundary condi-

tions �C8�–�C10�. Note that in these equations, all terms that
depend on the magnetization directions are multiplied by the
charge current density. Thus the spin accumulation should be
independent of the magnetization directions of electrodes in
which the charge current density vanishes.

Next we discuss the magnetization direction dependence
of the spin current. The spin current can be obtained from the
spin accumulation as follows:

js =
��1 − 
2�

2e
� ��+ − �−� + 
jc, �C11�

ji
s =

�i�1 − 
i
2�

2e
� ��i+ − �i−� + 
ji

c. �C12�

Then from the properties of the spin accumulation, it is evi-
dent that the spin current density should be independent of
the magnetization directions of electrodes in which the
charge current density vanishes.

Finally we discuss the charge potential, which is subjected
to the SDD equation �Eq. �C7��. The boundary conditions for
the charge potential can be derived from Eq. �C3� and one
obtains

n̂ · ���+�+ + �−�−� = n̂i · ���i+�i+ + �i−�i−� = 0.

�C13�

From Eq. �C4�, one obtains

n̂ · ���+�+ + �−�−� = n̂ · ���i+�i+ + �i−�i−� , �C14�

and from Eq. �C5�, one obtains

1

e

�i+�i+ + �i−�i−

�i
−

1

e

�+�+ + �−�−

�
=


i − 


2e
��+ − �−�

+
�iRti�1 − 
i

2�
16e

��1 + 
i��1 + �i� − �1 − 
i��1 − �i��

� n̂ · ���i+ − �i−� +
Rti

8
��1 + 
i�2�1 + �i� + �1 − 
i�2�1

− �i��n̂ · ji
c. �C15�

Note that the SDD equation �Eq. �C7�� and the boundary
conditions �C13� and �C14� are not dependent on the mag-
netization directions of any electrodes. Thus the magnetiza-
tion direction dependence can arise only from the boundary
condition �C15�. From Eq. �C15� and from the properties of
the spin accumulation, one then finds that the charge poten-
tial at the electrode Fi is independent of the magnetization
direction of other non-current-carrying electrodes. This in
turn implies that the nonlocal voltage measured between the
electrode Fi and the base electrode �x= +�� should be inde-
pendent of the magnetization directions of other non-current-
carrying electrodes Fj �j� i�.

EFFECT OF FERROMAGNETIC CONTACTS ON SPIN… PHYSICAL REVIEW B 78, 214427 �2008�

214427-11



1 I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323
�2004�.

2 L. Berger, Phys. Rev. B 54, 9353 �1996�.
3 J. Slonczewski, J. Magn. Magn. Mater. 159, L1 �1996�.
4 For a recent review, see A. Brataas, G. E. W. Bauer, and P. J.

Kelly, Phys. Rep. 427, 157 �2006�; Y. Tserkovnyak, A. Brataas,
G. E. W. Bauer, and B. I. Halperin, Rev. Mod. Phys. 77, 1375
�2005�.

5 M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F.
Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas,
Phys. Rev. Lett. 61, 2472 �1988�.

6 G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev.
B 39, 4828 �1989�.

7 For a recent review, see E. Y. Tsymbal, O. N. Mryasov, and P. R.
LeClair, J. Phys.: Condens. Matter 15, R109 �2003�.

8 J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C.
Ralph, Phys. Rev. Lett. 84, 3149 �2000�.

9 M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 �1985�;
Phys. Rev. B 35, 4959 �1987�; 37, 5312 �1988�.

10 F. J. Jedema, H. B. Heersche, A. T. Filip, J. J. A. Baselmans, and
B. J. van Wees, Nature �London� 416, 713 �2002�; F. J. Jedema,
M. S. Nijboer, A. T. Filip, and B. J. van Wees, Phys. Rev. B 67,
085319 �2003�.

11 Y. Ji, A. Hoffmann, J. S. Jiang, J. E. Pearson, and S. D. Bader, J.
Phys. D 40, 1280 �2007�.

12 S. O. Valenzuela and M. Tinkham, Nature �London� 442, 176
�2006�; J. Appl. Phys. 101, 09B103 �2007�.

13 T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa,
Phys. Rev. Lett. 98, 156601 �2007�.

14 T. Kimura, J. Hamrle, Y. Otani, K. Tsukagoshi, and Y. Aoyagi,
Appl. Phys. Lett. 85, 3795 �2004�.

15 T. Kimura, J. Hamrle, and Y. Otani, Phys. Rev. B 72, 014461

�2005�.
16 R. Godfrey and M. Johnson, Phys. Rev. Lett. 96, 136601 �2006�.
17 M. V. Costache, M. Zaffalon, and B. J. van Wees, Phys. Rev. B

74, 012412 �2006�.
18 P. C. van Son, H. van Kempen, and P. Wyder, Phys. Rev. Lett.

58, 2271 �1987�.
19 T. Valet and A. Fert, Phys. Rev. B 48, 7099 �1993�.
20 D. R. Penn and M. D. Stiles, Phys. Rev. B 72, 212410 �2005�.
21 A. Brataas, Y. V. Nazarov, and G. E. W. Bauer, Eur. Phys. J. B

22, 99 �2001�.
22 A. A. Kovalev, A. Brataas, and G. E. W. Bauer, Phys. Rev. B 66,

224424 �2002�.
23 A. A. Kovalev, G. E. W. Bauer, and A. Brataas, Phys. Rev. B 73,

054407 �2006�.
24 S. Hershfield and H. L. Zhao, Phys. Rev. B 56, 3296 �1997�.
25 S. Takahashi and S. Maekawa, Phys. Rev. B 67, 052409 �2003�.
26 B. C. Lee, T.-S. Kim, K. Rhie, and J. Hong, Appl. Phys. Lett.

91, 022504 �2007�.
27 J. Hamrle, T. Kimura, Y. Otani, K. Tsukagoshi, and Y. Aoyagi,

Phys. Rev. B 71, 094402 �2005�.
28 J. Bass and W. P. Pratt, Jr., J. Magn. Magn. Mater. 200, 274

�1999�.
29 A. Fert and L. Piraux, J. Magn. Magn. Mater. 200, 338 �1999�.
30 S. Sahoo, T. Kontos, J. Furer, C. Hoffmann, M. Gräber, A. Cot-

tet, and C. Schönenberger, Nat. Phys. 1, 99 �2005�.
31 H. T. Man, I. J. W. Wever, and A. F. Morpurgo, Phys. Rev. B 73,

241401�R� �2006�.
32 Our results for MR, in fact, are in agreement with the collinear

case of A. Brataas, Yu. V. Nazarov, and G. E. W. Bauer, Phys.
Rev. Lett. 84, 2481 �2000�.

33 T.-S. Kim �unpublished�.

KIM, LEE, AND LEE PHYSICAL REVIEW B 78, 214427 �2008�

214427-12


